Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473865

RESUMO

Opioid peptides and their G protein-coupled receptors are important regulators within the cardiovascular system, implicated in the modulation of both heart and vascular functions. It is known that naloxone-an opioid antagonist-may exert a hypertensive effect. Recent experimental and clinical evidence supports the important role of inflammatory mechanisms in hypertension. Since opioids may play a role in the regulation of both blood pressure and immune response, we studied these two processes in our model. We aimed to evaluate the effect of selective and non-selective opioid receptor antagonists on blood pressure and T-cell activation in a mouse model of high swim stress-induced analgesia. Blood pressure was measured before and during the infusion of opioid receptor antagonists using a non-invasive tail-cuff measurement system. To assess the activation of T-cells, flow cytometry was used. We discovered that the non-selective antagonism of the opioid system by naloxone caused a significant elevation of blood pressure. The selective antagonism of µ and κ but not δ opioid receptors significantly increased systolic blood pressure. Subsequently, a brief characterization of T-cell subsets was performed. We found that the blockade of µ and δ receptors is associated with the increased expression of CD69 on CD4 T-cells. Moreover, we observed an increase in the central memory CD4 and central memory CD8 T-cell populations after the δ opioid receptor blockade. The antagonism of the µ opioid receptor increased the CD8 effector and central memory T-cell populations.


Assuntos
Analgesia , Hipertensão , Camundongos , Animais , Antagonistas de Entorpecentes/farmacologia , Pressão Sanguínea , Receptores Opioides delta/metabolismo , Naloxona/farmacologia , Receptores Opioides mu , Dor , Analgésicos Opioides/farmacologia , Receptores Opioides kappa/metabolismo
2.
Cancers (Basel) ; 15(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36900355

RESUMO

Glioblastomas (GBM) are the most common, primary brain tumors in adults. Despite advances in neurosurgery and radio- and chemotherapy, the median survival of GBM patients is 15 months. Recent large-scale genomic, transcriptomic and epigenetic analyses have shown the cellular and molecular heterogeneity of GBMs, which hampers the outcomes of standard therapies. We have established 13 GBM-derived cell cultures from fresh tumor specimens and characterized them molecularly using RNA-seq, immunoblotting and immunocytochemistry. Evaluation of proneural (OLIG2, IDH1R132H, TP53 and PDGFRα), classical (EGFR) and mesenchymal markers (CHI3L1/YKL40, CD44 and phospho-STAT3), and the expression of pluripotency (SOX2, OLIG2, NESTIN) and differentiation (GFAP, MAP2, ß-Tubulin III) markers revealed the striking intertumor heterogeneity of primary GBM cell cultures. Upregulated expression of VIMENTIN, N-CADHERIN and CD44 at the mRNA/protein levels suggested increased epithelial-to-mesenchymal transition (EMT) in most studied cell cultures. The effects of temozolomide (TMZ) or doxorubicin (DOX) were tested in three GBM-derived cell cultures with different methylation status of the MGMT promoter. Amongst TMZ- or DOX-treated cultures, the strongest accumulation of the apoptotic markers caspase 7 and PARP were found in WG4 cells with methylated MGMT, suggesting that its methylation status predicts vulnerability to both drugs. As many GBM-derived cells showed high EGFR levels, we tested the effects of AG1478, an EGFR inhibitor, on downstream signaling pathways. AG1478 caused decreased levels of phospho-STAT3, and thus inhibition of active STAT3 augmented antitumor effects of DOX and TMZ in cells with methylated and intermediate status of MGMT. Altogether, our findings show that GBM-derived cell cultures mimic the considerable tumor heterogeneity, and that identifying patient-specific signaling vulnerabilities can assist in overcoming therapy resistance, by providing personalized combinatorial treatment recommendations.

3.
Mediators Inflamm ; 2021: 4977209, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335086

RESUMO

Cardiovascular disease (CVD) is the leading cause of death worldwide. The most dangerous life-threatening symptoms of CVD are myocardial infarction and stroke. The causes of CVD are not entirely clear, and new therapeutic targets are still being sought. One of the factors involved in CVD development among vascular damage and oxidative stress is chronic inflammation. It is known that hyaluronic acid plays an important role in inflammation and is regulated by numerous stimuli, including proinflammatory cytokines. The main receptors for hyaluronic acid are CD44 and RHAMM. These receptors are membrane proteins that differ in structure, but it seems that they can perform similar or synergistic functions in many diseases. Both RHAMM and CD44 are involved in cell migration and wound healing. However, their close association with CVD is not fully understood. In this review, we describe the role of both receptors in CVD.


Assuntos
Proteínas da Matriz Extracelular , Receptores de Hialuronatos , Movimento Celular/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Coração , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Cicatrização
4.
Int J Mol Sci ; 22(8)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920718

RESUMO

The opioid system is well-known for its role in modulating nociception and addiction development. However, there are premises that the endogenous opioid system may also affect blood pressure. The main goal of the present study was to determine the impact of different endogenous opioid system activity and its pharmacological blockade on blood pressure. Moreover, we examined the vascular function in hyper- and hypoactive states of the opioid system and its pharmacological modification. In our study, we used two mouse lines which are divergently bred for high (HA) and low (LA) swim stress-induced analgesia. The obtained results indicated that individuals with low endogenous opioid system activity have higher basal blood pressure compared to those with a hyperactive opioid system. Additionally, naloxone administration only resulted in the elevation of blood pressure in HA mice. We also showed that the hypoactive opioid system contributes to impaired vascular relaxation independent of endothelium, which corresponded with decreased guanylyl cyclase levels in the aorta. Together, these data suggest that higher basal blood pressure in LA mice is a result of disturbed mechanisms in vascular relaxation in smooth muscle cells. We believe that a novel mechanism which involves endogenous opioid system activity in the regulation of blood pressure will be a promising target for further studies in hypertension development.


Assuntos
Aorta/efeitos dos fármacos , Pressão Sanguínea , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Nociceptividade , Animais , Aorta/citologia , Aorta/metabolismo , Endotélio Vascular/efeitos dos fármacos , Feminino , Guanilato Ciclase/metabolismo , Masculino , Camundongos , Miócitos de Músculo Liso/efeitos dos fármacos , Vasodilatação
5.
Front Immunol ; 11: 584509, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329558

RESUMO

Rituximab is a pioneering anti-CD20 monoclonal antibody that became the first-line drug used in immunotherapy of B-cell malignancies over the last twenty years. Rituximab activates the complement system in vitro, but there is an ongoing debate on the exact role of this effector mechanism in therapeutic effect. Results of both in vitro and in vivo studies are model-dependent and preclude clear clinical conclusions. Additional confounding factors like complement inhibition by tumor cells, loss of target antigen and complement depletion due to excessively applied immunotherapeutics, intrapersonal variability in the concentration of main complement components and differences in tumor burden all suggest that a personalized approach is the best strategy for optimization of rituximab dosage and therapeutic schedule. Herein we critically review the existing knowledge in support of such concept and present original data on markers of complement activation, complement consumption, and rituximab accumulation in plasma of patients with chronic lymphocytic leukemia (CLL) and non-Hodgkin's lymphomas (NHL). The increase of markers such as C4d and terminal complement complex (TCC) suggest the strongest complement activation after the first administration of rituximab, but not indicative of clinical outcome in patients receiving rituximab in combination with chemotherapy. Both ELISA and complement-dependent cytotoxicity (CDC) functional assay showed that a substantial number of patients accumulate rituximab to the extent that consecutive infusions do not improve the cytotoxic capacity of their sera. Our data suggest that individual assessment of CDC activity and rituximab concentration in plasma may support clinicians' decisions on further drug infusions, or instead prescribing a therapy with anti-CD20 antibodies like obinutuzumab that more efficiently activate effector mechanisms other than complement.


Assuntos
Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Proteínas do Sistema Complemento/imunologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/imunologia , Rituximab/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Murinos/farmacologia , Antígenos CD20/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Ativação do Complemento/efeitos dos fármacos , Ativação do Complemento/imunologia , Humanos , Linfoma não Hodgkin/tratamento farmacológico , Linfoma não Hodgkin/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...